Roll No.:....

B028412(028)

B. Tech. (Fourth Semester) Examination, April-May 2022

(AICTE Scheme)

(Electronics & Telecommunication Engineering Branch)

ANALOG CIRCUITS

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: All questions are compulsory. Part (a) of each question is compulsory and carries 4 marks.

Attempt any two parts from (b), (c) and (d) from each question which carry 8 marks each.

Assume suitable data whenever required.

Unit-I

1. (a) State Miller's theorem and Dual of Miller's theorem.

(b) For the amplifier shown compute $A_I = \frac{I_0}{I_i}$, A_v , A_{vs} and R_i .

(c) (i) Show that the exact expression for h_{fb} in terms of CE hybrid parameters is:

$$h_{fb} = -\frac{h_{fe}(1 - h_{re}) + h_{ie}h_{oe}}{(1 + h_{fe})(1 - h_{re}) + h_{ie}h_{oe}}$$

(ii) The cascade configuration shown is the tendem emitter follower. Find the input resistance R_i if $h_{ie} = h_{re} = h_{oe} = 0$ and h_{fe} is the same for each transistors Q_1 to $Q_{N'}$

(d) Draw h-parameter equivalent circuit for a generalized transistorized amplifier and derive expressions for A_i, A_v, R_i.

Unit-II

- 2. (a) What is the meaning of upper 3-dB frequency and lower 3dB frequency? Show it on frequency response.
 - (b) (i) Define Transconductance g_m and derive the expression for it.
 - (ii) Also prove that : $g_{ce} = h_{oe} h_{fe}$. $g_{b'c}$
 - (c) The following low frequency parameters are known for a given transistor at $I_C = 1.3$ mA, $V_{CE} = 10$ V at room temperature and h-parameters are $h_{fe} = 50$, $h_{je} = 1100$ Ω , $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 24$ μ A/V. At the same point $F_T = 50$ MHz, CC = 100

(d) Analyse common emitter transistor amplifier at high frequencies for short circuit current gain. Also prove that $F_T=h_{fe}$. F_{β} .

Unit-III

- 3. (a) Define the following types of distortion:
 - (i) Non-Linear Distortion
 - (ii) Frequency Distortion
 - (b) Explain the step response of an amplifier. Derive the expression for rise time and sag. Briefly why this happens?
 - (c) Explain the effect of cascading on Bandwidth with the help of expression for higher and lower cut-off frequencies.
 - (d) It is desired that the voltage gain of a RC coupled amplifier at 60 Hz should not decrease by more than 10% from its midband value. Show that the coupling capacitance C must be at least equal to B028412(028)

5.5/R' where $R' = R_o' + R_i'$ is expressed in $k\Omega$ and C in microfarad.

Unit-IV

- 4. (a) Draw a feedback amplifier in one-line block diagram form. What is the relation between transfer gain with feedback A_f and that without feedback A for a negative feedback amplifier.
 - (b) For the circuit shown find the ac voltage V_i as a function of V_s and V_f . Assume that the inverting amplifier input resistance is infinite and that $A = A_v = -1000$.

$$\beta = V_f / V_0 = 1$$
, $R_e = R_c = R_c = 1 K$,

$$h_{ie} = 1 \, \text{K}, \ h_{re} = h_{oe} = 0, h_{fe} = 100 \, \text{Find} \ A_{rf} = V_0 / V_s$$

[6]

- (c) What is the effect of negative feedback on input impedance of voltage shunt and current shunt amplifier?
- (d) Enumerate the effects of negative Feedback on the various characteristics of the amplifier.

Unit-V

- 5. (a) Give the two Barkhausen conditions required in order for sinusoidal oscillations to be sustained.
 - (b) Draw the circuit and explain the working of Hartley oscillator using BJT. Write expression for frequency of oscillation.
 - (c) What is Weign bridge oscillator? Show that for such an oscillator gain of amplifier should be A > 3 to produce oscillations.
 - (d) What is piezoelectric effect? Draw and explain ac equivalent circuit of a crystal oscillator.